Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(3-Chlorophenyl)- N^{\prime}-(3-methylphenyl)succinamide

B. S. Saraswathi, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com

Received 29 June 2011; accepted 13 July 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; disorder in main residue; R factor $=0.050 ; w R$ factor $=0.130$; data-to-parameter ratio $=14.2$.

The asymmetric unit of the title compound, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$, contains one half-molecule with a center of inversion at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. The amide $\mathrm{N}-\mathrm{H}$ group is anti to the meta-chloro/methyl groups in the adjacent benzene rings. The dihedral angle between the benzene ring and the $\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{CH}_{2}$ segment is $43.5(1)^{\circ}$. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into chains along the a axis. The methyl group and the Cl atom occupy the same position and were treated in a disorder model with site-occupation factors of 0.5 each.

Related literature

For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Bhat \& Gowda (2000); Gowda et al. (2007); Saraswathi et al. $(2011 a, b)$ and on the structures of N -(aryl)-methanesulfonamides, see: Jayalakshmi \& Gowda (2004). For similar structures, see: Pierrot et al. (1984). For restrained geometry, see: Nardelli (1999).

Experimental

$$
\begin{aligned}
& \text { Crystal data } \\
& \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}
\end{aligned} \quad M_{r}=316.78
$$

Triclinic, $P \overline{1}$
$a=4.840$ (1) \AA
$b=5.560(1) \AA$
$c=14.752(3) \AA$
$\alpha=93.47$ (2) ${ }^{\circ}$
$\beta=91.39(2)^{\circ}$
$\gamma=97.71(2)^{\circ}$
$V=392.46(13) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.44 \times 0.20 \times 0.08 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.130$
$S=0.99$
1567 reflections
110 parameters

Diffraction, 2009)
$T_{\text {min }}=0.897, T_{\text {max }}=0.980$ 2451 measured reflections 1567 independent reflections 1249 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.010$

14 restraints
H -atom parameters constrained
$\Delta \rho_{\max }=0.17 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.17 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.05	$2.894(2)$	168

Symmetry code: (i) $x-1, y, z$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2508).

References

Bhat, D. K. \& Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.
Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.
Jayalakshmi, K. L. \& Gowda, B. T. (2004). Z. Naturforsch. Teil A, 55, 491-500. Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Pierrot, M., Baldy, A., Maire, J. C., Mehrotra, R. C., Kapoor, T. S. \& Bachlas, B. P. (1984). Acta Cryst. C40, 1931-1934.

Saraswathi, B. S., Foro, S. \& Gowda, B. T. (2011a). Acta Cryst. E67, o966.
Saraswathi, B. S., Foro, S. \& Gowda, B. T. (2011b). Acta Cryst. E67, o1591.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

N-(3-Chlorophenyl)- N^{\prime}-(3-methylphenyl)succinamide

B. S. Saraswathi, S. Foro and B. T. Gowda

Comment

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures of this class of compounds (Bhat \& Gowda, 2000; Gowda et al., 2007; Jayalakshmi \& Gowda, 2004; Saraswathi et al., 2011a,b), in the present work, the structure of N-(3chlorophenyl), N -(3-methylphenyl)- succinamide, (I), has been determined (Fig.1). The asymmetric unit of (I) contains half a molecule with a center of inversion at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond, similar to that observed in bis(2-chlorophenylaminocarbonylmethyl)disulfide, (II), (Pierrot et al., 1984), N,N-bis(3-chlorophenyl)-succinamide, (III), (Saraswathi et al., 2011a) and N,N-bis(3-methylphenyl)-succinamide dihydrate, (IV), (Saraswathi et al., 2011b).

The conformations of the amide O atoms are anti to the H atoms attached to the adjacent C atoms. Further, the conformations of the $\mathrm{N}-\mathrm{H}$ bonds in the amide fragments are anti to the meta-chloro/methyl groups in the adjacent benzene rings, similar to the anti conformations observed with respect to the meta-chloro groups in (III) and meta-methyl groups in (IV).

Further, the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 1 \mathrm{a}-\mathrm{N} 1 \mathrm{a}-\mathrm{C} 7 \mathrm{a}-\mathrm{C} 8 \mathrm{a}$ segments in (I) are nearly planar and so also the C1-N1-C7-O1 and C1a-N1a-C7a-O1a segments, similar to those observed in (III) and (IV). The torsion angles of $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$ are $-43.2(4)^{\circ}$ and $138.6(3)^{\circ}$, in contrast to the values of $-35.0(3)^{\circ}$ and $147.5(2)^{\circ}$ in (III), and 5.4 (9) ${ }^{\circ}$ and -173.6 (6) ${ }^{\circ}$ in (IV).

The dihedral angle between the benzene ring and the $\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{CH}_{2}$ segment is $43.5(1)^{\circ}$, compared to the values of 62.1 (2) $)^{\circ}$ in (III) and $5.6(4)^{\circ}$ in (IV).

The packing of the molecules in the crystal is accomplished by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) that lead is shown in Fig. 2.

Experimental

Succinic anhydride $(0.01 \mathrm{~mol})$ in toluene $(25 \mathrm{ml})$ was treated dropwise with 3-chloroaniline $(0.01 \mathrm{~mol})$ also in toluene $(20 \mathrm{ml})$ with constant stirring. The resulting mixture was stirred for one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove unreacted 3-chloroaniline. The resultant solid N-(3-chlorophenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The compound was recrystallized to a constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra.

The N-(3-chlorophenyl)succinamic acid obtained was then treated with phosphorous oxychloride and excess of 3-methylaniline at room temperature with constant stirring. The resultant mixture was stirred for 4 h , kept aside for additional 6 h for completion of the reaction and poured slowly into crushed ice with constant stirring. It was kept aside for a day. The resultant solid, N-(3-chlorophenyl), N-(3-methylphenyl)-succinamide was filtered under suction, washed thoroughly with

supplementary materials

water, dilute sodium hydroxide solution and finally with water. It was recrystallized to a constant melting point from a mixture of acetone and toluene ($3: 1 \mathrm{v} / \mathrm{v}$). The compound was characterized by its infrared and NMR spectra.

Prism-like colorless single crystals used in X-ray diffraction studies were grown in a mixture of acetone and toluene $(3: 1 \mathrm{v} / \mathrm{v})$ at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic, $\mathrm{C}-\mathrm{H}=0.97 \AA$ for methylene and $\mathrm{N}-\mathrm{H}=0.86 \AA$ for amide H atoms and were refined with isotropic displacement parameters, set to $1.2 \times U_{\text {eq }}$ of the parent atom. Atoms C 9 and $\mathrm{Cl1}$ occupy the same position. The disorder was treated by using a split-atom model. The corresponding site-occupation factors were fixed to $0.50: 0.50$. The U^{ij} components of these atoms were restrained to approximate isotropic behavior (Nardelli, 1999), the bond lenghts C3-C9 and C3-Cl1 were restrained.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

N-(3-Chlorophenyl)- \boldsymbol{N}^{1}-(3-methylphenyl)succinamide

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$
$M_{r}=316.78$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=4.840(1) \AA$
$b=5.560(1) \AA$
$c=14.752(3) \AA$
$\alpha=93.47(2)^{\circ}$
$\beta=91.39(2)^{\circ}$
$\gamma=97.71(2)^{\circ}$
$V=392.46(13) \AA^{3}$
$Z=1$
$F(000)=166$
$D_{\mathrm{x}}=1.340 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1094 reflections
$\theta=2.8-27.7^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.44 \times 0.20 \times 0.08 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur
1567 independent reflections
diffractometer with Sapphire CCD detector
Radiation source: fine-focus sealed tube

graphite

Rotation method data acquisition using ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.897, T_{\text {max }}=0.980$
2451 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.130$
$S=0.99$
1567 reflections
110 parameters
14 restraints

$$
\begin{aligned}
& 1249 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.010 \\
& \theta_{\max }=26.3^{\circ}, \theta_{\min }=2.8^{\circ} \\
& h=-6 \rightarrow 5 \\
& k=-6 \rightarrow 6 \\
& l=-18 \rightarrow 17
\end{aligned}
$$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0501 P)^{2}+0.2642 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O1	$0.2418(3)$	$0.7102(3)$	$-0.09593(13)$	$0.0651(6)$	
N1	$-0.2109(3)$	$0.5789(3)$	$-0.13211(12)$	$0.0417(5)$	
H1	-0.3807	0.5949	-0.1204	0.050^{*}	
C1	$-0.1722(4)$	$0.4107(4)$	$-0.20578(14)$	$0.0384(5)$	
C2	$0.0217(4)$	$0.4712(4)$	$-0.27063(14)$	$0.0445(5)$	
H2	0.1310	0.6226	-0.2657	0.053^{*}	
C3	$0.0541(5)$	$0.3084(5)$	$-0.34254(15)$	$0.0520(6)$	
C4	$-0.1059(6)$	$0.0831(5)$	$-0.34971(18)$	$0.0630(7)$	
H4A	-0.0831	-0.0283	-0.3977	0.076^{*}	
C5	$-0.2988(6)$	$0.0250(5)$	$-0.2854(2)$	$0.0659(7)$	

supplementary materials

H5A	-0.4070	-0.1269	-0.2904	0.079^{*}	
C6	$-0.3364(5)$	$0.1866(4)$	$-0.21353(16)$	$0.0502(6)$	
H6	-0.4703	0.1453	-0.1709	0.060^{*}	
C7	$-0.0058(4)$	$0.7190(4)$	$-0.08329(14)$	$0.0414(5)$	
C8	$-0.0999(4)$	$0.8842(4)$	$-0.00851(15)$	$0.0441(5)$	
H8A	-0.1160	0.7990	0.0470	0.053^{*}	
H8B	-0.2828	0.9240	-0.0249	0.053^{*}	
C9	$0.251(3)$	$0.364(4)$	$-0.4221(10)$	$0.155(8)$	0.50
H9A	0.3567	0.5224	-0.4105	0.185^{*}	0.50
H9B	0.1426	0.3602	-0.4776	0.185^{*}	0.50
H9C	0.3763	0.2442	-0.4274	0.185^{*}	0.50
C11	$0.2883(5)$	$0.3904(5)$	$-0.42162(12)$	$0.0742(6)$	0.50

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0252(8)$	$0.0862(13)$	$0.0794(12)$	$0.0103(7)$	$0.0031(7)$	$-0.0380(10)$
N1	$0.0249(8)$	$0.0507(11)$	$0.0484(10)$	$0.0059(7)$	$0.0052(7)$	$-0.0101(8)$
C1	$0.0295(9)$	$0.0447(12)$	$0.0415(11)$	$0.0094(8)$	$-0.0013(8)$	$-0.0030(9)$
C2	$0.0366(11)$	$0.0497(13)$	$0.0457(12)$	$0.0028(9)$	$0.0031(9)$	$-0.0039(9)$
C3	$0.0458(12)$	$0.0695(16)$	$0.0415(12)$	$0.0152(11)$	$0.0031(10)$	$-0.0051(11)$
C4	$0.0707(17)$	$0.0637(17)$	$0.0532(14)$	$0.0147(13)$	$0.0009(12)$	$-0.0188(12)$
C5	$0.0738(18)$	$0.0468(14)$	$0.0717(17)$	$-0.0039(12)$	$-0.0025(14)$	$-0.0111(12)$
C6	$0.0462(12)$	$0.0493(13)$	$0.0526(13)$	$-0.0017(10)$	$0.0059(10)$	$-0.0003(10)$
C7	$0.0283(10)$	$0.0485(12)$	$0.0471(12)$	$0.0073(8)$	$0.0046(8)$	$-0.0065(10)$
C8	$0.0302(10)$	$0.0550(13)$	$0.0458(11)$	$0.0071(9)$	$0.0048(8)$	$-0.0114(10)$
C9	$0.149(9)$	$0.162(9)$	$0.152(9)$	$0.019(5)$	$0.009(5)$	$0.006(5)$
C11	$0.0639(9)$	$0.1109(15)$	$0.0466(7)$	$0.0093(9)$	$0.0242(7)$	$-0.0080(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 7$	$1.224(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.342(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.423(3)$
$\mathrm{N} 1-\mathrm{H} 1$	0.8591
$\mathrm{C} 1-\mathrm{C} 6$	$1.382(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.381(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.378(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.379(4)$
$\mathrm{C} 3-\mathrm{C} 11$	$1.686(3)$
$\mathrm{C} 3-\mathrm{C} 9$	$1.550(9)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.369(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$125.39(16)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1$	118.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	116.1
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$119.8(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$119.33(19)$

$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.380(3)$
C5-H5A	0.9300
C6-H6	0.9300
C7-C8	$1.510(3)$
C8-C8	$1.507(4)$
C8-H8A	0.9700
C8-H8B	0.9700
C9-H9A	0.9600
C9-H9B	0.9600
C9-H9C	0.9600
C6-C5-H5A	119.2
C5-C6-C1	$119.0(2)$
C5-C6-H6	120.5
C1-C6-H6	120.5
O1-C7-N1	$122.90(18)$

sup-4

supplementary materials

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$120.85(19)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.4(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.0(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11$	$119.1(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11$	$120.9(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9$	$124.4(7)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 9$	$115.4(7)$
$\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 9$	$5.9(7)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.2(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.4
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.6(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.2
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$138.7(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-43.0(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.6(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.9(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.5(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11$	$178.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9$	$175.8(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.8(4)$
$\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-178.4(2)$
$\mathrm{S} 5-2 \mathrm{C} 5$	

O1-C7-C8	121.54 (18)
N1-C7-C8	115.51 (16)
C7-C8-C8 ${ }^{\text {i }}$	112.1 (2)
C7-C8-H8A	109.2
C8 ${ }^{\text {i }}$ - $\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.2
C7-C8-H8B	109.2
C8 ${ }^{\text {i }}$ - C 8 - H 8 B	109.2
H8A-C8-H8B	107.9
C3-C9-H9A	109.5
C3-C9-H9B	109.5
H9A-C9-H9B	109.5
C3-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
C9-C3-C4-C5	-175.8 (9)
C3-C4-C5-C6	-0.1 (4)
C4-C5-C6-C1	-1.0 (4)
C2-C1-C6-C5	1.3 (3)
N1-C1-C6-C5	179.6 (2)
C1-N1-C7-O1	-2.4 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	179.8 (2)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	32.9 (4)
N1-C7-C8-C8 ${ }^{\text {i }}$	-149.2 (2)

Symmetry codes: (i) $-x,-y+2,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{ii}}$
Symmetry codes: (ii) $x-1, y, z$.

$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
0.86	2.05	$2.894(2)$	168.

supplementary materials

Fig. 1

Fig. 2

